Skip to content Skip to navigation menu

C3 CPG (DMT-1,3-Propanediol-Suc-CPG) Column

C3 CPG (DMT-1,3-Propanediol-Suc-CPG) Column

CPG column for incorporation of a C3 spacer at the 3' end of an oligonucleotide.

Key features

Show Hide
  • Incorporates a hydrophobic 3-carbon spacer at the 3' end of an oligonucleotide
  • Useful as an alternative to 3'-phosphate for nuclease and polymerase resistance, especially with restriction enzymes
  • Available in different column formats
  • 1000 Å CPG suitable for highly modified oligonucleotides (> 20mers)
Option 1: Select a Pore Size
Option 2: Select a Column Type
Option 3: Select a Scale
TBD
Add to basket to request a quote

Product information

In general terms, a spacer is introduced into an oligonucleotide to add distance between the oligonucleotide and a modifier. This reduces the possibility of any adverse interaction between the modifier and the sequence. For instance, G-rich sequences are known to quench fluorescein therefore the use of a suitable spacer will remove the dye label from the proximity of the oligonucleotide minimising the quenching effect. In a similar fashion, spacers are often used to distance between multiple additions of self-quenching dyes e.g. fluorescein.(1) The application of the modified oligonucleotide will dictate whether a hydrophilic (Spacer 18 (HEG), Spacer 9 (TEG)) or hydrophobic spacer (Spacer C2, C3, C6, C12, C16) is required. Multiple incorporations of varying lengths of these spacers allow the precise length of the spacer arm to be controlled. This can be important in hairpin loop(2) and duplex studies(3) of DNA. Several spacers have specific uses. A C3 spacer mimics the three carbon spacing between the 3’ and 5’ hydroxyls of a sugar unit.(4) Although useful where the base at a specific site is unknown, the flexibility of the alkyl chain distorts the sugar-phosphate backbone. This can be alleviated with the use of dSpacer since incorporation of this modifier sits directly into the natural sugar-phosphate backbone with no adverse effect. This modifier mimics abasic sites(5) and is useful in the study of mutations resulting from depurination. Although less common than terminal spacing, but equally important, spacers have been incorporated within an oligonucleotide.

This adds distance between sections of the sequence. For instance, Cytocell’s SMART detection assay(6) uses spacer 18 in the template probe where one section acts as an anchor in binding to the target leaving the other section free for hybridisation to the extension probe to allow amplification during PCR. In this case, the spacer gives flexibility to the template probe to enable hybridisation to both the target and the extension probe. In similar way, spacer 18 is used in Scorpion™ Primers to separate the probe and primer section. However in this case, this not only provides the flexibility to allow the probe to flip back to hybridise to the amplicon but also acts as a PCR blocker to prevent read through to the probe.(7) 3'-Spacers are often used as an alternative to 3'-phosphate as blockers since, when incorporated at the 3'-end, the resulting oligonucleotide shows nuclease and polymerase resistance. In fact, spacer C3 is often incorporated at the 3'-end of an oligonucleotide for use with restriction enzymes rather than phosphate since the latter is thought to partially cleave during the assay.

Ref:

  1. See for example: Design of multidye systems for FRET-based applications, M.S. Shchepinov and V.A. Korshun, Nucleosides, Nucleotides & Nucleic Acids, 20, 369-374, 2001.
  2. Circular dichroism studies of an oligodeoxyribonucleotide containing a hairpin loop made of a hexaethylene glycol chain: conformation and stability, M. Durand, K. Chevrie, M. Chassignol, N.T. Thuong and J.C. Maurizot, Nucleic Acids Research, 18, 6353-6359, 1990.
  3. A nicked duplex decamer DNA with a PEG6 tether, L. Kozerski, A.P. Mazurek, R. Kawecki, W. Bocian, P. Krajewski, E. Bednarek, J. Sitkowski, M. P. Williamson, A.J.G. Moir and P.E. Hansen, Nucleic Acids Research, 29, 1132-1143, 2001.
  4. Enhancing sequence-specific cleavage of RNA within a duplex region: Incorporation of 1,3-propanediol linkers into oligonucleotide conjugates of serinol-terpyridine, B.N. Trawick, T.A. Osiek and J.K. Bashkin, Bioconjugate Chem., 12, 900-905, 2001.
  5. (a) Oligodeoxynucleotides containing synthetic abasic sites model substrates for DNA-polymerases and apurinic apyrimidinic endonucleases, M. Takeshita, C.N. Chang, F. Johnson, S. Will and A.P. Grollman, J. Biol. Chem., 262, 10171-10179, 1987; (b) NMR-studies of abasic sites in DNA duplexes deoxyadenosine stacks into the helix opposite the cyclic analog of 2-deoxyribose, M.W. Kalnik, C.N. Chang, A.P. Grollman and D.J. Patel, Biochemistry, 27, 924-931, 1988.
  6. Detection of virus mRNA within infected host cells using an isothermal nucleic acid amplification assay: marine cyanophage gene expression within Synechococcus sp, S.D. Wharam, M.J. Hall and W.H. Wilson, Virology Journal, 4, 52-59, 2007.
  7. Duplex Scorpion primers in SNP analysis and FRET applications, A. Solinas, L.J. Brown, C. McKeen, J.M. Mellor, J.T.G. Nicol, N. Thelwell and T. Brown, Nucleic Acids Research, 29 (20), e96, 2001.
Synthesizer
Column
Type/Description
Notes
MerMade 6,12
MerMade, syringe (all scales)
Pipette type column
A MerMade column is also known as a Supercolumn
MerMade 4, 48X, 96E, 192E, 192X
MerMade, Syringe (up to 1.3 mL)
Pipette type column
A MerMade column is also known as a Supercolumn
ABI 384 / 394
Luer
Barrel column with luer fitting at either end
Also known as ALL-FIT or Standard
Expedite 8909
Luer
Barrel column with luer fitting at either end
Also known as ALL-FIT or Standard
ABI3900
MerMade
Pipette type column
A MerMade column is also known as a Supercolumn
K&A H4, H8, H8SE, H2, H32, H64
Luer
Barrel column with luer fitting at either end
Also known as ALL-FIT or Standard
K&A S4CL/S8CL
Luer
  Barrel column with luer fitting at either end 
 Also known as Standard. For this instrument, we recommend the Luer (Standard) column as the ALL-FIT columns have a wider barrel.
Dr Oligo 48
MerMade
Pipette type column
A MerMade column is also known as a Supercolumn
 Dr Oligo 192XLc, 768XLc just plates 
 MerMade, Syringe (up to 1.3 mL) 
Pipette type column
A MerMade column is also known as a Supercolumn
 OligoMaker X12, 48, 192, X192, X96 
MerMade, Syringe (up to 1.3 mL)
Pipette type column
A MerMade column is also known as a Supercolumn

Properties:

  • Appearance: White Powder

Product usage:

  • Cleavage conditions: Use concentrated ammonia for 90 minutes at 25 °C when using standard amidites or 1:1 ammonia:methylamine (AMA) for 25 minutes at 25 °C when using fast deprotecting amidites.
  • Deprotection conditions: When using fast deprotecting amidites (eg. C-Ac, G-DMF, G-PAC) use concentrated ammonia for 1 hour or AMA for 30 minutes at 60 °C. When using standard amidites (eg. C-Bz, G-iBu) use concentrated ammonia for 5 hours at 60 °C.
  • Image of cleaved and deprotected structure:
  • The mass this product adds after conjugation and work-up (the additional mass seen by mass spectrometry) is: 138.05

Storage and handling:

  • Shipping conditions: Ambient
  • Storage conditions: +2 to +8 °C in sealed container

Access support

Need some support with placing an order, setting up an account, or finding the right protocol?

Contact us